Calculation of eigenvalues of Sturm–Liouville equation for simulating hydrodynamic soliton generated by a piston wave maker
نویسندگان
چکیده
This paper focuses on the mathematical study of the existence of solitary gravity waves (solitons) and their characteristics (amplitude, velocity, [Formula: see text]) generated by a piston wave maker lying upstream of a horizontal channel. The mathematical model requires both incompressibility condition, irrotational flow of no viscous fluid and Lagrange coordinates. By using both the inverse scattering method and a given initial potential [Formula: see text] we can transform the KdV equation into Sturm-Liouville spectral problem. The latter problem amounts to find negative discrete eigenvalues [Formula: see text] and associated eigenfunctions [Formula: see text], where each calculated eigenvalue [Formula: see text] gives a soliton and the profile of the free surface. For solving this problem, we can use the Runge-Kutta method. For illustration, two examples of the wave maker movement are proposed. The numerical simulations show that the perturbation of wave maker with hyperbolic tangent displacement under physical conditions affect the number of solitons emitted.
منابع مشابه
On the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point
In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملThe Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point
The purpose of this paper is to study the higher order asymptotic distributions of the eigenvalues associated with a class of Sturm-Liouville problem with equation of the form w??=(?2f(x)?R(x)) (1), on [a,b, where ? is a real parameter and f(x) is a real valued function in C2(a,b which has a single zero (so called turning point) at point 0x=x and R(x) is a continuously differentiable function. ...
متن کاملThe numerical values of the nodal points for the Sturm-Liouville equation with one turning point
An inverse nodal problem has first been studied for the Sturm-Liouville equation with one turning point. The asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated and an asymptotic of the nodal points is obtained. For this problem, we give a reconstruction formula for the potential function. Furthermore, numerical examples have been established a...
متن کاملNumerical solution of the Sturm-Liouville problem by using Chebyshev cardinal functions
In this manuscript, a numerical technique is presented for finding the eigenvalues of the regular Sturm-Liouville problems. The Chebyshev cardinal functions are used to approximate the eigenvalues of a regular Sturm-Liouville problem with Dirichlet boundary conditions. These functions defined by the Chebyshev function of the first kind. By using the operational matrix of derivative the problem ...
متن کامل